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A study has been made of baroclinic instability in a differentially heated, rotating 
fluid annulus whose channel width varies azimuthally. Both laboratory experi- 
ments and an a.nalytica1 model employing a linear normal-mode analysis have 
been used. The experiments show three types of flow. For slow rotation the flow is 
‘symmetric ’, whereas at high rotation speeds baroclinic waves occur at all azi- 
muths. At intermediate rotation speeds it is possible to have a mixed flow which 
is ‘ symmetric ’ in the narrow part but has baroclinic waves in the wide part of the 
annulus. This result suggested the analytical investigation of the stability of a 
barocIinic flow whose meridional scale varies downstream. It was found that this 
model also permits three possible types of flow: everywhere stable, everywhere 
unstable, and also a mixed flow which is locally unstable where the meridional 
scale is largest but locally stable where the scale is smallest. 

1. Introduction 
In  this paper we extend the baroclinic-instability work of the last 25 years to 

the case of an eccentric annulus. Early experiments (Fultz 1949,1951; Hide 1953, 
1958) showed that, when an annulus of water was rotated about its vertical axis of 
symmetry and a radial temperature difference applied, various flow regimes 
occurred according to the values of the rotation speed and temperature difference. 
In  particular, at low rotation speeds (for a given temperature difference) the flow 
in the interior region of the fluid was axisymmetric, but above a critical speed a 
pattern of baroclinic waves was set up. Beyond another critical speed the flow 
pattern was found to be irregular. Subsequently more investigations were carried 
out (for example, Fultz et d. 1959; Fowlis & Hide 1965) to determine the extent 
of the different flow regimes in parameter space. These and other investigations 
have been reviewed by Hide 85 Mason (1975). 

The first analytical models of baroclinic instability (Charney 1947; Eady 1949) 
were made with the atmosphere in mind. An inviscid fluid in a straight channel 
rotating about the vertical and bounded above and below by rigid surfaces formed 

t Present address: N.C.A.R. Boulder, Colorado 80303. 
$ Present address : Department of Oceanography, University of Southampton. 
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the basis of Eady’s model. Using what would now be termed the quasi-geostro- 
phic approximation, he obtained a simple equation for the perturbation quanti- 
ties of a linear stability analysis. The equation derived (see Phillips 1963; Hide 
1969) contains a dimensionless parameter B whose square root is the Rossby 
radius of deformation divided by the width of the annulus and which measures 
the importance of stratification as against Coriolis effects. When normal modes 
were taken, the resulting eigenvalue problem showed that in Eady’s model all the 
modes were stable if B > 0.583 but if B was below this critical value long waves 
were unstable and short waves stable. Comparisons of these results with annulus 
experiments show reasonable agreement for low viscosity considering the neglect 
of details of curvature, flow structure and nonlinear effects. Later workers 
(Davies 1956; Brindley 1960; Williams 1974; Pedlosky 1970; Drazin 1970) con- 
firmed that such approximations did not substantially alter Eady’s result, pro- 
vided that potential-vorticity gradients are absent from the interior of the fluid. 
If such gradients are present in the basic flow it is possible for the short waves to be 
destabilized (Bretherton 1966; McIntyre 1970), but the effect appears to be weak 
enough to be nullified by comparatively small viscous dissipation (Barcilon 1964). 
In  summary, i t  appears that Eady’s simple model does provide the essential 
explanation, as originally proposed by Lorenz (1953) and Davies (1953), of the 
transition between axisymmetric and non-axisymmetric flow as the onset of 
baroclinic instability. 

In  the laboratory experiments described below, traverses were made across 
parameter space to find the positions a t  which waves could first be detected at 
both the widest and the narrowest point of the annulus. These experiments show 
that, within the range of conditions investigated, the instability is predominantly 
a local effect. This means that the nature of the flow at any point in the annulus is 
determined by the local values of the dimensionless parameters. Thus, in addition 
to the well-known ‘symmetric’ and wave regimes a new, intermediate mixed 
regime was found where both flow types could exist simultaneously in different 
parts of the annulus: waves in the wider section and ‘symmetric’ flow in the 
narrower section. Since only two traverses were made, using a water-glycerol 
solution and a silicone fluid, i t  was not possible to determine whether the trans- 
ition curves on the regime diagram tend to a single inviscid limit, which would 
imply that, in this limit, the instability is entirely a local effect. 

The mathematical model modifies Eady’s inviscid theory to take account of 
the eccentricity of the annulus. Instead of assuming a spatially periodic solution 
along the channel, a JWKB solution is used which permits spatial oscillations in 
the wider part of the flow with exponentially damped solutions elsewhere. 
Although precise quantitative comparisons of the results of the two parallel 
investigations are inappropriate, both show the mixed flow regime occurring 
between the fully ‘symmetric ’ and wave regimes. For this reason we felt justified 
in presenting the results of both investigations together. The paper proceeds 
with a discussion of the experiments and their results, after which follows the 
mathematical model and its results. 
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FIGURE 1. Diagram of experimental apparatus. (a) Side view. ( b )  Plan view. A ,  acrylic 
cylinder; B, outer temperature bath; C ,  copper outer wall; D, acrylic window; E ,  working 
fluid; F ,  eccentric light-alloy sleeve ; B, brass cylinder containing inner temperature bath ; 
H, acrylic lid with suspended thermocouple probes; I, acrylic false bases; J ,  phenolic 
laminate base ; K ,  position of thermocouple probes. 

2. Laboratory experiments : apparatus and procedure 
The apparatus (see figure 1) was similar to that used in previous annulus 

experiments (for example Douglas, Hide & Mason 1972). Metal cylinders forming 
an annular region contained the working fluid. An eccentric sleeve made from 
light alloy fitted tightly onto the concentric brass inner cylinder to form the inner 
wall. 

The depth of the working region was set at 122 mm using a system of false 
bases end the eccentric sleeve (see figure 1). This positioned the narrow window 
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near the mid-level of the fluid for streak photography (see Douglas et al. 1972) at 
a level of small azimuthal flow velocities. The working fluid used was either a 
15 yo solution of glycerol in water of viscosity 1.32 mm2 s-l containing neutrally 
buoyant polystyrene beads or a silicone fluid of viscosity 0-65 mm2 s-l containing 
a suspension of aluminium powder. The Prandtl numbers of these two fluids are 
10.2 and 6.77 respectively so changing the fluid did not make a large change in 
this parameter. The thermal expansion coefficient of the silicone fluid is about 
five times larger than that of the water-glycerol solution but since the para- 
meter BL (see $ 3 )  was calculated using density this difference was accounted for. 

Two arrays of five thermocouples were used to measure the temperature 
within the fluid, one array at the widest and the other a t  the narrowest point of 
the channel (see figure 1). At the points where the temperature was to be meas- 
ured 125pm copper wires were soldered to 250 pm constantan vertical wires 
which were relatively rigid and suspended from the acrylic lid. The reference 
temperature in this experiment was the cold bath‘s temperature, the common 
return copper wire and the constantan wires from each of the thermocouples 
being soldered together to form a junction against the inside of the cold bath’s 
wall. From the annulus the copper wires were joined to a screened cable which 
carried the signals to the top of the tripod, where a high-quality electrical slip- 
ring transferred them off the rotating system. Further screened cable carried the 
signals to a data logging system which could scan the channels a t  a preselected 
interval, and record the voltages measured in digital form. An analog signal was 
also available for continuous monitoring of a single channel on a chart recorder. 
This was used to see whether the working fluid had reached a steady state. From 
the trace produced i t  could be seen whether the temperature was steady, as with 
symmetric flow, or periodically varying, as with waves. In  the latter case the 
sampling frequency was decided from the trace so that no informa tion would be 
lost by aliasing of high frequencies to lower ones. The data were recorded on 
punched tape and logging continued for sufficient time to allow several hundred 
samples to be taken, to provide a good quantity of data for averaging. If drifting 
waves were present several wave lobes were allowed to move past the stationary 
thermocouple arrays. Photographs were taken to correlate with the temperature 
measurements. 

3. Experimental results 
The local B and Taylor number are defined by 

where g is the acceleration due to gravity, d the annulus depth, p and apo/ax the 
mean density and the locally measured density gradient, s2 the apparatus rota- 
tion speed, v the viscosity and L = q(b - a)  the local gap width (see $ 4  and figure 4). 
The results of the two series of experiments using the two different fluids are 
presented in table 1. For each run this shows BL and TaL at the widest and narrow- 
est points of the annulus and indicates whether the flow was symmetric or con- 
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Run 

w1 
w 2  
w 3  
w 4  
w5 
W6 
w 7  
W8 
w 9  

w10 
w11 
w 1 2  

s1 
52 
s3 
s 4  
s 5  
S6 
s7 
S8 

n 
(rad s-l) 

0.962 
1.015 
1.054 
1.104 
1.175 
1.301 
1.431 
1.548 
1.636 
1-698 
1-827 
1.928 

1.640 
1-848 
2.040 
2.252 
2.493 
2.978 
3.396 
3.984 

Narrow region Wide region 
I > -  A 

BL 

1.377 
1.263 
1.148 
1.053 
0-943 
0.770 
0.640 
0.557 
0.499 
0.541 
0.408 
0.365 

2.327 
1.900 
1.567 
1.332 
1.036 
0.735 
0.565 
0.404 

Stable/ 
T a L x  waves BL 

Water-glycerol solution 

0.141 S 0.434 
0.157 S 0.408 
0.169 S 0.363 
0.186 S 0.376' 
0.210 S 0.308 
0.258 S 0.249 
0.312 S 0.210 
0.365 S 0.186 
0.408 S 0.163 
0.439 W 0.162 
0.508 W 0.140 
0.566 W 0.125 

Silicone j luid 
1-68 S 0.768 
2.13 S 0.634 
2.59 S 0.521 
3.16 S 0.448 
3 4 7  S 0.356 
5.53 S 0.251 
7.19 W 0.194 
9.89 W 0.137 

Stable/ 
TaL x wave8 

2.31 
2.58 
2.78 
3-05 
3.45 
4-23 
5.12 
5.99 
6.70 
7.21 
8.34 
9.29 

27.5 
34.9 
42.6 
51.9 
63.6 
90.7 

118.0 
162.3 

S 
S 
W 
W 
W 
W 
W 
W 
W 
W 
W 
W 

x 
S 
W 
W 
W 
W 
W 
W 

172 

0 
0 
1 
1 
1 
2 
2 
2 
2 
4 
4 
4 

0 
0 
1 
1 
2 
2 
3 
- 

TABLE 1. Summary of experimental results near transitions 

tained baroclinic waves. This and the number of waves In were determined by 
photographic observations made with each logged run and by use of the recorded 
data. In figure 2, these results are shown on a regime diagram where the points 
are plotted using the local gap width L, which affects both BL and Ta,, and the 
locally measured ap,/az, which affects only BL. The error in the measured values 
of B, and Ta, was about 10 yo, arising from the errors in measuring experimental 
quantities. This error is demonstrated by the values of BL in table 1, which do not 
decrease monotonically for the water-glycerol solution in the narrow region. 

Figure 2 shows that in the wide region the transition to wave flow occurred at 
about the same position in parameter space as was found in the concentric case; 
curve HM on figure 2 is taken from Hide & Mason (1970, figure 15). Our results 
indicate that the critical value of BL depends upon Ta, and, as in the concentric 
case, may not tend to an inviscid limit but may keep on increasing slowly; see 
Ketchum (1972) and Douglas & Mason (1973). Williams (1974) indicates that this 
behaviour can be modelled by an inviscid theory in which B and 8iila.z are 
functions of z. Two pieces of evidence suggest that the instability observed ini- 
tially in the wide region is not forced in any way. First, no waves occur whilst BL 
at the widest point (i.e. the lowest BL anywhere) exceeds that for the concentric- 
annulus transition. Second, the ability of the wave pattern to drift relative to 
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FIGURE 2. Experimental results plotted on a regime diagram. Narrow-region points : 
0, stable; 0.  waves. Wide region points: a, stable; H, waves. HM, transition curve. €rom 
Hide & Mason (1970). The run numbers indicate the values in table 1. 

the boundaries implies that its exact form is not being controlled closely by the 
boundary conditions (as is the case, for example, with localized bottom topo- 
graphy; Leach 1975). The waves seen f i s t  in the wide region are a result of local 
instability which spreads to the rest of the annulus as the local values of BL 
decrease. 

If the onset of instability in the narrow region of the annulus were purely local 
then the transition curves on figure 2 would be superimposed. If, however, in- 
stability occurred everywhere simultaneously (i.e. a t  the same value of n), the 
narrow-region transition curve would occur for values of BL greater than 1.0 
(see table 1) and thus the narrow-region transition curve would appear well above 
its actual position on the regime diagram, figure 2. In  reality neither of these 
extremes is the case, but the curve is at distinctly higher values of BL compared 
with the wide-region curve, showing a slight destabilization. So some non-local 
effect must be invoked to explain the more rapid spread (with decreasing 23,) of 
waves into the narrow region than would be expected if the instability were purely 
local. This could be advection of the waves from the unstable region into the 
narrow part of the annulus, or alternatively the proximity of the unstable region 
forcing waves where they would otherwise be viscously damped. The latter view 
is supported by the dependence of the effect on viscosity because the transition 
curves are closer together a t  high Ta,. (We do not expect the curves to cross as 
TaL+ 03 since this would imply stabilization of the narrow region for some non- 
viscous reason.) When waves do not occur in the narrow region, figure 2 shows 
that the values of Ta, are well above the viscous cut-off for waves to occur. The 
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knee of the concentric-annulus curve occurs a t  T a e  lo5 (Fowlis & Hide 1965). 
Thus the absence of waves is due to the high values of B,, and is not caused by 
viscous dissipation of the waves since TuL is well above lo5. 

The drift of the wave pattern relative to the annulus could be observed by 
both chart-recorder and computer-program representations of the temperature 
variation at a point and also by both still and cine photography. From these it 
seemed that such drift was often inhibited in the eccentric annulus (compared 
with the concentric annulus) although some films and traces did show steady 
drifting of a wave pattern. Using the recorded data for those eases i t  was possible 
to study the vertical structure of the waves. In  only one case was the temperature 
amplitude of the waves a t  the top and bottom of the channel sufficient to deter- 
mine their relative phase but in that case it was 1.1 rad, in agreement with the 
experimental results of Douglas el al. (1972, figure 10). The data also show that the 
temperature amplitude of the waves is largest near the middle of the fluid, a 
feature of baroclinic waves in a concentric annulus (see Williams 1971). In  
addition to the transition occurring for BL in the range O.PO.6, this phase and 
amplitude information indicates strongly that the observed waves were indeed 
baroclinic waves. Some photographs of the flow patterns observed at a variety of 
rotation speeds are presented in figure 3 (plates 1-5). 

The waves could be made to drift by having a free upper surface to the working 
fluid. Such an asymmetry between the top and bottom boundary conditions 
causes the thermal-wind shear to give the fluid a net azimuthal velocity. Cin6 
films taken of drifting waves when only part of the eccentric annulus was unstable 
show that the waves grow where the channel widens, drift through the widest 
region and decay where the channel narrows, clearly indicating the region of 
baroclinic instability. 

It would be desirable to conduct more experiments a t  even higher Taylor 
number although the value of lo8 reached is higher than that of many workers 
(Fowlis & Hide 1965; Hide & Mason 1970). This would decide whether the two 
transition curves converge as Ta, becomes large, consequently implying that the 
onset of instability is a purely local effect everywhere. However, such an investi- 
gation is not possible with the present apparatus; a larger annulus would need to 
be constructed. 

4. Mathematical model 
Equations of motion 

At first sight it might seem desirable to use eccentric annular co-ordinates (see 
Wood 1957) in order to find the stability of the experimental flow described 
above. It was decided, however, to use Cartesians instead and to treat the flow as 
if it were in a channel of varying width, as the simplicity of the equations of 
motion outweighs the disadvantage of the asymmetric boundary condition a t  the 
inner cylinder. Cartesian co-ordinates (x’, y’, 2’) are related to cylindrical polar 
co-ordinates (r’, 8,~‘) with origin at the centre of the outer cylinder by 

y’ = b-r’, x‘ = b e ,  (1) 
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FIGURE 4. Plan view of eccentric annulus showing quantities used 
in mathematical analysis. 

where a and b are the radii of the cylinders; see figure 4. If the annulus depth is d, 
non-dimensional co-ordinates can be defined by 

If we denote the distance between the cylinder centres by c and let the outer 
cylinder correspond to y = 0, then the inner cylinder, y = q(8), is given by 

q( 0) = (6 + c cos 8 - a1 cos $ 1  ) / ( b  - a) ,  (3) 

where sin g5 = (c/a) sin 8. (4) 

Let e = (b-a) /b .  (5) 

( b - a ) ( x , y )  = (z‘,y’), dz = z / .  (2) 

If B is small curvature can be neglected and, since 8 = ex, q can be regarded as a 
slowly varying function of x. 

The fluid is assumed to be incompressible, inviscid, adiabatic and Boussinesq 
and to be rotating about the vertical with angular velocity SZ. Non-dimensional 
velocities and time are defined by 

where the Rossby number R = V/2SZ(b -u ) .  
V(U,V)  = (a‘ ,~’) ,  VdRwl(6-a) = w’, (b-a) t /V = t’, (6) 
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Following Pedlosky (1964), the equation for the pressure p of the basic flow is 
that for conservation of potential vorticity, namely 

where DJDt = a/at - (ap/ay)  a/ax + (ap/az) afay, the geostrophic material deriva- 
tive. Here B is taken to be a constant given by 

(see Hide 1969), where BL is the local value defined previously in $3 .  
expanded as a power series in E ,  of which the first few terms are 

can be 

The hydrostatic and geostrophic equations then give 

Thus iij = 0 and, to lowest order in 8, !!? = R-IBz-q-ly, which agrees with the 
experimental situation, where the temperature difference across the annulus, a t  
a given depth, is constant at all azimuths. A first-order differential equation can 
be found for the unspecified functionf(8) by imposing the boundary condition of 
zero normal velocity at the inner cylinder, namely 

Elcosq5I +usin$ = 0 a t  y = q. (13) 

This basic flow has constant potential vorticity and so excludes the possibility 
of a slowly growing instability beyond the Eady cut-off. Such an instability can 
occur, as was shown by Charney (1947), Green (1960) and McIntyre (1970), when 
the potential-vorticity gradient is non-zero. This slowly growing instability of 
short waves is damped by viscosity in most annulus experiments, and the trans- 
ition to waves found there should correspond qualitatively to the cut-off found 
in Eady’s model. 

Because the basic flow has constant potential vorticity, the perturbation 
pressure p satisfies (7 )  with D,/Dt unaltered but with p replacing j?~ in the expres- 
sion for the potential vorticity. The boundary conditions of no normal flow at the 
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(14) 

(15) 

v = appx = 0 on y = 0, 

vlcos+/ +usin# = 2 lcos41 --sin+ aP = o on y = q, 
ax aY 

a - a  - a )ap+(auap  azap) 
at+"-+"- ax ay - a2 -- azay az ax Bw = -(- +-- = O  on x =  ki, (16) 

p ( o  = -n) = p ( e  = n). (17) 

When normal modes are taken and p is assumed proportional to exp ( - id), 
equation (7) and the above boundary conditions define an eigenvalue problem 
for the complex constant w. A separable solution can be found for p of the form 

where 

Substituting in (7) and equating coefficients of powers of the small parameter E, 

we find to zeroth order 

The boundary conditions (14) and (15) give, to zeroth order, 

PO=O on y=O,q  (21) 

because sin + = O ( E )  x sin 8, so that I cos $1 = 1 - 0 ( e 2 ) .  Separation of variables in 
(20) and use of the boundary conditions (21) give 

a2po/az= = hye)p0 (22) 

and 

so that 

where A,, A,, h and q are functions of 8. Equation (20) now reduces to 

p0 = [Al cosh hz + A,  sinh hz] sin (nnylq), (24) 

dzx1de2 + A y e )  E-zX = 0, (25) 

where h2 = hZ/B - n2n2 la" (26) 

Since E is small, (25) is of the standard form for a JWKB expansion with solution 

where 
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Boundary condition (16), to zeroth order, reduces to 

Using the condition on z = - 8 gives the ratio Al/A, and we can put 

(29) 

The condition on z = 3 gives another value for the ratio A J A ,  and elimination 
vields 

The equation and boundary conditions for the fist-order solution can be 
found from (7) and (14)-( 17). Multiplication of this equation by $o, integration 
with respect to y, z and 6' and use of the boundary conditions yields a solubility 
condition which defines wl. The equation for fY1 can then be solved and thus 
further terms of the perturbation expansion can be obtained. Full details can be 
found in Gent (1 974). 

The radial velocity perturbation v = &p/ax, so that the zeroth-order solution 
for v is 

v = ihi[A, cosh hz+A,sinhhx] s i n T e x p  [ k ~ ~ B A ( B ) d B - i w O t ] ,  (32) 
P 

with (33) 

It can be seen from the equation of motion and boundary conditions that, if 

(a) v( - x, y ,  z ) ,  with eigenvalue - wo, 

(b )  v(x, q - y, z ) ,  with eigenvalue wo, 

( c )  v(x, y, - z ) ,  with eigenvalue -wo ,  

(d)  v*(x, y, x), with eigenvalue w:, 

~ ( x ,  y, z )  is an eigensolution with eigenvalue wo = wOr + iwoi, then so are 

where an asterisk denotes a complex conjugate. If a(@)  were constant, the problem 
would reduce to Eady's and in that case there would be either one stable and one 
unstable mode or two neutral modes. If this is still true when q is a slowly varying 
function of x, then for woi < 0 symmetries (a), (c) and (d) must give the same un- 
stable mode. Thus if ooi += 0, - wo = w$ and so wor = 0. Thus w: is always real and 
the principle of exchange of stabilities is valid. When q is not constant, however, 
the unstable mode could bifurcate into two unstable modes with distinct eigen- 
values wo and -wg (Drazin 1971), but in the following calculations only real 
values of w i  were used and the latter possibility ignored. 
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FIUURE 5. Graph o€L(h2)  - -- - va. h2 for h2 real with B = rt = p = 1. 

Global instability, W: < 0 

In  this section, the local stability characteristics are found when there is global 
instability. First assume a purely imaginary positive value for wo. (The reason 
for adopting this procedure is explained in Q 5.) Then for given B and n, h2( 8)  can 
be found implicitly from (33) a t  any fixed value 8 of 8, and hence A2(8) found from 
(26). The local stability characteristics a t  8 = 8 depend on the nature of A2(8). 
When w: < 0 there are three possible local stability regions and they can be seen 
by looking at the graph of u: against h2 for 8 = 6' and h2 real. Figure 5 shows an 
example when q(8) = B = n = 1. wt  has two zeros: when L(h2) = 0, at ha e 5-76, 
and when A2 = 0,  at h2 = Bn2n2q-2. The latter zero occurs a t  different values of h2 
depending on the value of 8. Define 

The minimum is taken between these limits on h2 because the function tends to 
+ co as h2 -+ + 00 and -r2. The precise form of the graph of w: against h2, for h2 
real, depends upon 8 since q is a function of 8. When Bn2n2q-2(8) < 5-76, a(& is 
negative; i t  increases to zero as Bn2n-2q-2(6') -+ 5.76, then decreases again and is 
negative when Bn2n2q-2(8) > 5.76. If Bn2n2q-2(8) < 5.76 and a(8) < W: then there 
are two possible real roots for h2 and both give A2(8) real and positive. The local 
solution for x, therefore, is pure oscillatory and the flow is termed locally unstable. 
If a(B) > w: however, then the roots for h2 and A 2 ( s )  must be complex, the two 
roots being complex conjugates. The local solution for x will now have both 
oscillatory and exponential terms, and is called damped oscillatory. Finally, if 
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a(8) < w i  and Bn2n-zq-2( 8) > 5.76, as in figure 5, then the two roots for h2 are again 
real but both give AZ(8) real and negative. The local solution for x, therefore, is 
exponentially decreasing and of the form 

xocexp[-(-Az(B))te/€l. (35) 

The exponentially growing solutions have been neglected as they are physically 
inadmissible. Because 8 is small, the spatial exponential decay of this final local 
solution means that i t  will be a small fraction of the order-one pure oscillatory 
spatial solution in the locally unstable region. This fraction is independent of the 
value oft and thus the flow is termed locally stable despite the exponential time 
growth of the linear solution. Drazin (1970) has studied the nonlinear Eady 
problem and showed that the separable, time-dependent part of the solution 
should not be exponentially growing, but is bounded above as t-tco. Thus the 
locally stable region, where the perturbation amplitude will always be small 
compared with that in the locally unstable region, corresponds to the symmetric 
flow in the experiments while the locally unstable region corresponds to the wave 
regime. 

Let the boundaries between the locally unstable and damped oscillatory 
regions be a t  8 = k M ,  and those between the damped oscillatory and locally 
stable regions a t  8 = f N .  Thus 

It can also be proved that there must be a region of local instability for the eigen- 
function to be non-zero; if not, boundary condition (17) makes the eigenfunction 
identically zero. 

If both M and N occur in the range 0 < 0 < n then the solution for v is 

V c l  

iA*exp [!Ie -N Re(A)dO] exp [ -:/i'Im(h)d8], - N  < 8 6 - M  

i A 4  exp [!Ie Re ( A )  do] , - M  G e 6 M ,  
- N  

i h t exp[ i l e  Re(A)d0 ] exp [ -- t / :~ rn (~ )d~] ,  

i A 4  exp [ :j:N Re ( A )  do] exp [ -: 1: Im ( A )  do] , 

M o o ,  
- N  

N < 8 < n-. 

(37) 

Since A2 is an even function of 8 and is real and negative when N < 8 < n-, the 
boundary conditon v ( -n-) = v(n) gives the eigenvalue relation 

I = l I z ~ e  ( A )  d e  = 2mn-e, (38) 
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for rn = 1, 2, 3, . . . , and the corresponding eigenfunction has 2m + 1 antinodes. 
This is the eigenvalue relation that determines whether the assumed value of wo 
satisfies (38), and is indeed an eigenvalue. 

If only the locally unstable and damped oscillatory regions occur, the solution 
for v is 

The eigenvalue relation is again given by (38). If the solution for v is locally un- 
stable everywhere, (38) is still the eigenvalue relation but the eigenfunction is 

vccihtexp[!Sd e -71 A ~ o ] ,  - n G e G 7 7 ,  ( 40) 

which has 2m antinodes. 

Global stability, wg > 0 

When wt is positive, (33) always gives two real roots for h2(8); see figure 5. For 
one of these roots A2( S) is always negative and thus v is identically zero, but for the 
other root h2 (a )  is always positive. The solution for v and the eigenvalue relation 
are given by (40) and (38) respectively. No profiles were calculated for the globally 
stable case. 

5. Theoretical results 
In  order to find an eigenvalue, the values of B, m, n and e must be known. The 

values from the experimental apparatus of a = 51.3 mm, b = 84.3 mm and c = 
9.0 mm were used, so that e = 0.3915, which is rather large for use of the JWKB 
technique. The first mode, n = 1, is the most unstable. Then, for fixed values of B 
and m, a value was guessed for wo, the transition points a t  0 = c N found and the 
eigenvalue integral I evaluated using Gaussian integration. Linear interpolation 
on a few guesses quickly gave the value of uo necessary to make I = B~rme, and in 
this way the eigenvalue wo was found as a function of the other parameters of the 
problem. When solving for A2 as a function of 8, there are always two roots. In  the 
damped oscillatory region, choosing either of the complex-conjugate solutions 
does not alter the contribution to the eigenvalue integral 1, but elsewhere one has 
to choose between the solutions. To ensure that I -+ 0 as wo -+ 0,  one must choose 
the smaller root for h2 in the locally unstable region and the larger root in the 
locally stable region. Then h2 -+ 0 as w,, -+ 0 for all 8 and h2 = 0 on the neutral 
curveu, = 0. 

To find the transition from an identically zero solution everywhere to a flow 
locally unstable only in the wide part of the channel, one has to find the value of 
B such that I = 2ne when the point M occurs a t  8 = 0. Then for B greater than 
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FIG- 6. Vertical dependence of v and w at (a) the widest point and (b)  the narrowest 
point; B = 0.722, o,, = 0*063i, rn = 1. 
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FIGURE 7. Azimuthal variation of w at mid-level; same case 8s figure 6. 

this critical value, the flow is identically zero since there is no region of local 
instability, but for B less than this critical value, a flow can occur which is locally 
stable in the narrow region and locally unstable in the wide region. The theoretical 
value of B turns out to be 0.722, so that the critical local value at  the widest point 
of the channel used in the experiments is BL(e, c) = 0.446 a t  this transition. This 
is somewhat lower than the inviscid Eady value of 0.583, to which it asymptotes 
as e and c -+ 0. Both values are shown on figure 2. 

The vertically dependent part of the solution +oat this critical transition value 
of B = 0.722 is illustrated in figure 6(a ) ,  which shows the real and imaginary 
parts of the eigenfunctions of the radial velocity v and the vertical velocity w a t  
the widest point of the channel. From this the phase difference of v between the 
bottom and top of the model was found to be 0.75 rad. Figure 6(b) shows Im v 
and Re w a t  the narrowest point of the channel a t  the same critical value of B. At 
6' =n,ha is negative, so that Rev = Im w E 0 and the phase difference of v 
between the bottom and top is zero. Both figures have been scaled such that 
Im v = 1 a t  the bottom of the annulus. Figure 7 shows the azimuthal variation of 
v at the mid-level of the fluid, z = 0, for the same critical value of B and m = 1. 
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FIUURE 8. Azimuthal variation of v at mid-level; B = 0.36, wo = 0*119i, m = 2. 

The inner and outer circles are drawn to scale with the experimental apparatus 
and the middle circle is the zero line for the radial velocity. w has been set positive 
at  0 = 0 and the amplitude scale varies linearly with the gap width Q round the 
annulus. This solution for w is given by (37), and contains all three types of local 
behaviour, but the locally unstable region is very small since M N 1.8'. Figure 8 
shows the eigenfunction for w a t  the mid-level with B, a t  the widest point equal 
to 0.222 and m = 2. It is given by (391, and has only two types of local behaviour: 
locally unstable and damped oscillatory regions. The vertical phase difference is 
1.61 rad a t  8 = 0 and 0.17 rad at 8 =n. Figure 9 shows w a t  the mid-level of the 
fluid with BL at the widest point equal to 0.123 and m = 4. This eigenfunction is 
given by (30), and is locally unstable at all azimuths. The vertical phase difference 
is 1.75 rad a t  8 = 0 and 1.05 rad at 8 = n-. The values of m used in calculating these 
eigenfunctions were chosen from the appropriate value for water-glycerol solu- 
tion from table 1 for a given value of BL. The vertical phase differences deter- 
mined here are similar to those for the Eady model, which are shown in figure 2 of 
Douglas et ab. (1972). They increase quickly a t  first as B, decreases below the 
critical transition value but then increase very slowly as B, decreases further. 
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FIGURE 9. Azimuthal variation of v at mid-level; B = 0.2, 0, = 0.2922', m = 4. 

6. Conclusion 
The laboratory experiments described above show that in an annulus whose 

channel width varies it is possible for baroclinic waves to occur locally depending 
predominantly upon the local value of the stability parameter BL and the local 
Taylor number Ta,. The flow can be symmetric everywhere or contain baroclinic 
waves everywhere, or else contain waves in the wide part of the annulus only with 
symmetric flow in the narrow part. The linear normal-mode analysis also predicts 
three different types of flow, and shows that the region of large meridional scale 
can be baroclinically unstable while the region of small scale is stable. To this 
extent there is qualitative agreement between the two investigations. The experi- 
ments show that, for the transition to waves in the wide part of the annulus, the 
critical value of B, varies with viscosity, as in the concentric-annulus problem, 
whereas the inviscid theory predicts a single critical value of BL, which lies within 
the range found experimentally for finite viscosity, again like the concentric case. 
Further quantitative comparison is inappropriate because of the inapplicability 
of the relatively simple theory to the more complicated, viscous, experimental 
situation. 
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(a )  
FIGURE 3. Streak photographs of flow patterns in water-glycerol solution near t h e  mid- 
level of the fluid. 4 s exposure. (a )  R = 0.71 rad s-l, symmetric flow everywhere. 
( b )  .Q = 1.29 rad s-l, m = 1.  ( c )  !J = 1.58 rat1 s-l, m = 2 .  ( d )  L! = 1.99 rad sl, m = 4. 
( e )  .Q = 2.58 rad s-l, m = 5. ( b )  and (c) show waves only in the wide region while (d )  and 
( e )  show waves in the narrow region as well. Approximate values of BL can be estimated 
from table 1.  
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FIGURE 3 ( b ) .  For legend see plate I. 

Plate 2 
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FIGURE 3(c). For legend see plate 1. 

Plute 3 
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FIGURE 3 ( d ) .  For legend see plate 1. 

Plate 4 
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FIIXJRE 3 ( e ) .  For legend see plate 1. 

Plate 5 
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